

A Wilcoxon-Mann-Whitney Spatial Scan Statistic for Real and Functional Data

Zaineb Smida, Lionel Cucala, Ali Gannoun and Ghislain Durif

Institut Montpelliérain Alexander Grothendieck Université de Montpellier, France

Introduction

- ► Dataset: Variable X observed in n spatial locations.
- ► Goal: Cluster detection.
- ightharpoonup Cluster = spatial area Z in which X is significantly "different" from elsewhere.
- Question: Is there any significant cluster?

Scan method

► Statistical tests:

H₀: "Absence of a cluster"

 $H_{1,Z}$: "Presence of a cluster Z".

- ► Scan Statistic: maximum of a concentration index over a set of potential clusters.
- ► Significance: Monte-Carlo procedure.

Method: Univariate case

- $ightharpoonup Z \subset \mathcal{S}$: potential cluster and Z^c its complement.
- Wilcoxon-Mann-Whitney statistic:

$$SR(Z) = \sum_{i:s_i \in Z} R_i,$$

 R_i : the rank of X_i .

► Concentration index in Z:

$$I_{\text{rank}}(Z) = \frac{SR(Z) - M(Z)}{\sqrt{V(Z)}},$$

M(Z): the mean of SR(Z) and V(Z): the variance of SR(Z) under H_0 .

Method: Functional case

- $ightharpoonup Z \subset S$: potential cluster and Z^c its complement.
- Wilcoxon-Mann-Whitney statistic:

$$T_{\text{WMW}} = \frac{1}{n_Z n_{Z_i^c}} \sum_{i: s_i \in Z} \sum_{\{j: s_j \in Z^c\}} \frac{X_j - X_i}{\|X_j - X_i\|_{\chi}},$$

 n_Z : size of Z and n_{Z^c} : size of Z^c .

► Concentration index in *Z*:

$$\cup (Z) = (n_Z n_{Z^c}/n)^{1/2} T_{\text{WMW}}.$$

Significance of the tests

- ightharpoonup T permutations of the X_i 's : $\Lambda_{\text{WMW.SS}}^{(1)}, \ldots,$ $\Lambda_{\text{WMW.SS}}^{(T)}$
- p-value:

$$p_{value} = rac{1 + \sum_{i=1}^{T} \mathbb{1}_{\left\{ oldsymbol{\Lambda}_{\text{WMW.SS}}^{(i)} > oldsymbol{\Lambda}_{\text{WMW.SS}}
ight\}}}{T + 1}.$$

A Wilcoxon-Mann-Whitney spatial scan statistic for univariate data

- ▶ Dataset: $\{(X_i, s_i), i = 1, \dots, n\}$, where $s_i \in S \subset \mathbb{R}^2$: spatial location X_i : observation of real random variable X measured in location s_i (real marks).
- ▶ Median income in France in 2012 [1]: ► MLC detected [1]:

- WMW univariate spatial scan statistic:
 - $\Lambda_{\text{WMWUSS}} = \max_{Z \in \mathcal{D}} |I_{\text{rank}}(Z)|.$
- ► Most likely cluster (MLC): $\hat{C} = \arg \max |I_{\text{rank}}(Z)|.$

A Set of potential clusters

ightharpoonup Circular clusters: $D_{i,j}$: disc with center s_i and passing through s_i .

► A set of potential clusters:

$$\mathcal{D} = \{D_{i,j}, 1 \le i \le n, 1 \le j \le n\}.$$

A Wilcoxon-Mann-Whitney spatial scan statistic for functional data

- ▶ Dataset: $\{(X_i, s_i), i = 1, ..., n\}$, where $s_i \in \mathcal{S} \subset \mathbb{R}^2$: spatial location X_i : observation of χ -valued random element X measured in location s_i , χ : Hilbert space (functional marks).
- Demographic evolution in Spain (from 1998 to 2019) [2]:

► MLC detected & its associated demographic curves [2]:

- ► WMW functional spatial scan statistic: ► Most likely cluster (MLC):
 - $\Lambda_{\text{WMWFSS}} = \max_{Z \in \mathcal{D}} \|U(Z)\|_{\chi}.$

$$\hat{C} = \arg \max_{Z \in \mathcal{D}} \|U(Z)\|_{\chi}.$$

Conclusion and perspective

- ► Conclusion: Introduction of the nonparametric spatial scan statistics for real and functional data.
- Perspective: Develop another nonparametric spatial scan statistic based on the median test for functional data introduced in [3].

References

- Cucala, L. (2016). A Mann-Whitney scan statistic for continuous data. Communications in Statistics - Theory and Methods. 45, 321–329.
- Smida, Z., Cucala, L., Gannoun, A. and Durif, G. (2022). A Wilcoxon-Mann-Whitney spatial scan statistic for functional data. Computational Statistics & Data Analysis. 167, 107378.
- Smida, Z., Cucala, L., Gannoun, A. and Durif, G. (2022). A median test for functional data. Journal of Nonparametric Statistics. **34**, 520-553.